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UNSTEADY MOTION OF A VISCOUS LIQUID BETWEEN ROTATING

PARALLEL WALLS IN THE PRESENCE OF A CROSSFLOW

UDC 532.516A. A. Gurchenkov

The paper considers the unsteady flow of a viscous incompressible fluid inside an infinitely long slot
with uniform injection or suction of the fluid through the porous walls of the slot. The plates with the
fluid are rotated rigidly with constant angular velocity. The unsteady flow is induced by nontorsional
vibrations of the upper plate. The flow-velocity field and the tangential stress vectors exerted by the
fluid on the upper and lower walls of the slot are determined. In this case, one can find an exact
solution of the three-dimensional nonstationary Navier–Stokes equations. No restrictions are imposed
on the motion pattern of the plate.

The nonstationary problem of a boundary layer on a rotating plate in the absence of injection was considered
previously [1]. The nonstationary problem of a half-space bounded by a porous plate in the presence of injection
(suction) of the medium was solved in [2].

In the present paper, we study the unsteady flow of a homogeneous incompressible fluid. The slot is formed
by two infinite parallel porous plates Q1 and Q2 which are l apart. The fluid is in a mass force field with potential
U . The plates with the viscous fluid rotate in the space uniformly and rigidly with constant angular velocity ω0.
The vector ω0 makes constant angle α (0 < α 6 π/2) with the planes of the plates.

At the initial time, the upper porous plate Q1 begins to move with specified velocity u(t). The lower plate
remains fixed in a moving coordinate system. At the same moment, the fluid is injected (sucked off) through the
upper plate with velocity u0(t) along the normal to the plate surface. We attach a Cartesian coordinate system
Oxyz with unit vectors ex, ey, and ez to the upper plane Q1 of the slots, so that the plane Oxz coincides with the
plane Q1 and the y axis is directed perpendicular to Q1 into the depth of the fluid.

We assume that at the initial time t = 0, the upper porous plate, through which the fluid is injected or
sucked off with velocity u0(t) along the normal to it, begins to move in a longitudinal direction with velocity u(t).

The fluid flow is described by the Navier–Stokes equations and the following boundary and initial conditions
in the system Oxyz rotating with angular velocity ω0:

ω0 × (ω0 × r) + 2ω0 × V +
∂V

∂t
+ V (∇V ) = −1

ρ
∇P +∇U + ν∆V ,

(1)
divV = 0 in slot, V

∣∣∣
Q1

= {u(t),u0(t)}, V
∣∣∣
Q2

= u0(t), t > 0.

Here t is time, V is the fluid velocity, P is the pressure, ρ is the density, and ν is the kinematic viscosity. Motion
of the fluid begins from the state of rest: V (0, r) = 0.

A solution of system (1) is sought in the form

V = {Vx(y, t), u0(t), Vz(y, t)},

P =
1
2
ρ(ω0 × r)2 + ρU + ρx2ω0zu0(t)− ρz2ω0xu0(t)− ρy ∂u0(t)

∂t
+ ρs(y, t),

where s(y, t) is the pressure.
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For the velocity and pressure fields, we have the system
∂Vx
∂t

+ 2ω0yVz = LVx,
∂Vz
∂t
− 2ω0yVx = LVz,

(2)
∂s

∂y
= 2(ω0zVx − ω0xVz), 0 6 y 6 l,

where L = ν∂2/∂y2 − u0(t)∂/∂y.
A solution of system (2) is sought in the form

V = W sin 2Ωt− (W × ey) cos 2Ωt, (3)

whereW (y, t) is a new unknown function Ω = ω0y. The functionW satisfies a parabolic equation and the boundary
conditions

∂W

∂t
= LW , 0 6 y 6 l, (4)

where W (0, t) = u(t) sin 2Ωt+ u(t)× ey cos 2Ωt, t > 0, W (y, 0) = 0, and W (l, t) = 0.
We consider the case where u0(t) = a = const, which corresponds to uniform injection or suction. In this

case, a > 0 corresponds to injection of the medium through the upper wall of the slot and a < 0 corresponds to
suction.

Using the Duhamel integral, we write the solution of problem (4) in the form

W (y, t) =
∂

∂t

t∫
0

W (0, t− τ)W1(y, τ) dτ. (5)

Here W1(y, t) is a solution of the boundary-value problem

∂W1

∂t
+ a

∂W1

∂y
= ν

∂2W1

∂y2
, (6)

W1(0, t) =
{

1, t > 0,
0, t < 0,

W1(l, t) = 0.

To solve Eq. (6), we use operational calculus. We introduce a Laplace transform of a function by the relation

ũ(y, p) =

∞∫
0

exp (−pt)u(y, t) dt.

In the space of transforms, Eq. (6) becomes

ν
∂2W1

∂y2
(y, p)− a ∂W̃1

∂y
(y, p)− pW̃1(y, p) = 0, (7)

where

W̃1(0, p) = 1/p, W̃1(l, p) = 0. (8)

The solution of Eq. (7) has the form

W̃1(y, p) = C1 exp (λ1y) + C2 exp (λ2y). (9)

Determining the constants C1 and C2 from boundary conditions (8), we transform solution (9):

W̃1(y, p) =
1
p

exp (µy)
sinh [(l − y)

√
p/ν + µ2 ]

sinh (l
√
p/ν + µ2 )

, µ =
a

2ν
. (10)

We denote q =
√
p/ν + µ2 and take partial fractions of ψ = sinh [(l − y)q]/sinh (lq):

ψ = 1− y

l
+

2
π

∞∑
n=1

(−1)n

n

q2

q2 + (πn/l)2
sinπn(1− y/l)

= 1− y

l
+

2
π

∞∑
n=1

(−1)n

n

p+ µ2ν

p+ µ2ν + (πn/l)2ν
sinπn(1− y/l). (11)
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We denote λn = πn/l. Then, according to the well-known formulas of operational calculus [3], we obtain

L−1
( p+ µ2ν

P + µ2ν + (πn/l)2ν

)
=
µ2 + λ2

n exp[−(µ2 + λ2
n)νt]

µ2 + λ2
n

, (12)

where L−1 is the inverse Laplacian.
Substituting (11) into (10) with allowance for (12), we obtain the following solution of Eqs. (6) in the space

of originals:

W1(y, t) = exp (µy)

(
1− y

l
− 2
π

∞∑
n=1

1
n

sinλny
µ2 + λ2

n exp[−ν(µ2 + λ2
n)t]

µ2 + λ2
n

)
. (13)

Thus, the solution of problem (4) is defined by formulas (5) and (13).
Substituting (5) into (3) with allowance for (13), we obtain the required velocity field:

V = sin(2Ωt)
∂

∂t

t∫
0

W (0, t− τ)W1(y, t) dτ + cos(2Ωt)ey ×
∂

∂t

t∫
0

W (0, t− τ)W1(y, t) dτ. (14)

After transformations, formula (14) is brought to the form

V = T (0, t)W1(y, t) +

t∫
0

{[u(t− τ)− 2Ωu(t− τ)× ey] cos 2Ωτ

+ [u̇(t− τ)× ey + 2Ωu(t− τ)] sin 2Ωτ}W1(y, τ) dτ,

where T (0, t) = u(0) cos 2Ωt+ u(0)× ey sin 2Ωt.
Further transformations are conveniently performed in complex form. We introduce the complex vectors

V̂ = Vx + iVz and û = ux + iuz. Then, u× ey = iû, W (0, t) = iu(t) exp (−2iΩt), and T (0, t) = u(0) exp (2iΩt).
Formulas (5) and (13) are written as

Ŵ = i
∂

∂t

t∫
0

û(τ) exp (−2iΩτ)W1(y, t− τ) dτ,

V̂ = exp (2iΩt)
∂

∂t

t∫
0

û(τ) exp (−2iΩτ)W1(y, t− τ) dτ,

where

W1(y, t) = exp (µy)

(
1− y

l
− 2
π

∞∑
n=1

1
n

µ2 + λ2
n exp [−ν(µ2 + λ2

n)t]
µ2 + λ2

n

sinλny

)
.

The tangential stress vectors exerted by the fluid on the upper and lower walls of the slot are obtained from
the formulas

f̂0 = ρν
∂V̂

∂y

∣∣∣
y=0

, f̂l = ρν
∂V̂

∂y

∣∣∣
y=l

.

We finally obtain

f̂0 = exp (2iΩt)
∂

∂t

t∫
0

û(τ) exp (−2iΩτ)
∂u

∂y
(0, t− τ) dτ,

∂u

∂y

∣∣∣
y=0

= µ(1− cothµl)− 2
l

∞∑
n=1

λ2
n exp [−(µ2 + λ2

n)νt]
µ2 + λ2

n

,

f̂l = exp (2iΩt)
∂

∂t

t∫
0

û(τ) exp (−2iΩτ)
∂u

∂y
(l, t− τ) dτ,
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∂u

∂y

∣∣∣
y=l

= −exp (µl)
l

(
µ

sinhµl
+ 2

∞∑
n=1

(−1)n
λ2
n exp [−ν(µ2 + λ2

n)t]
µ2 + λ2

n

)
.

Asymptotic (for large t) representations of the tangential stress vectors are given

f̂0 = ρνµ(1− cothµl)û(t), f̂l = −ρνµ exp (µl)
sinhµl

û(t), µ =
a

2ν
.

From these expressions, it follows that the frictional forces exerted on the walls of the slot depend markedly on the
fluid crossflow velocity.

The obtained velocity field and tangential stress vectors exerted by the fluid on the plates can be used to
take into account forces exerted by fluid flows in channels of various forms, in filtration problems, and in simulation
of various physical phenomena in moving fluids.
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